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A METHOD FOR ESTIMATING THE MECHANICAL PROPERTIES OF A SOLID
MATERIAL SUBJECTED TO SIGNIFICANT COMPRESSIONAL FORCES —
PART I: NUMERICAL THEORETICAL SOLUTION
FOR A SINGLE THICK PLATE

1. INTRODUCTION

The mechanical pr{}pérties of materials create displacement and stress fields that often
contribute significantly to the static and dynamic response of the structures in which they are
found. One important characteristic shared by most elastomeric materials (especially slab-
shaped plates) is the change that occurs in their mechanical properties when the elastomer is
subjected to large compressional or tensile forces. Under these forces, the rigidity of the
material typically becomes larger and the damping factors become smaller. A thorough
understanding of such behavior is necessary so that the static and dynamic responses of a
material can be correctly included in mathematical models, as well as properly understood in

the actual physical structure itself.

Some of the numerous methods developed to determine the properties of various materials,
include those based on the use of resonance'™ and transfer function data.>>’ Several parameter
estimation techniques have also been investigated for plates.®!! Although the above approaches
do not allow for testing under significant compressional forces, efforts have been made to
measure material properties under large pressures.'*'* In such research, the material is placed in
a pressurized setting and insonified, after which its response is measured. However, these
procedures, which are typically conducted under extreme atmospheric pressure in the laboratory,
can have an adverse effect on instrumentation, as well as on safety. In other studies,'>'® a mass-
loaded, long, thin rod has been examined with respect to the bar wavespeed and corresponding

Young’s modulus (shear motion is not addressed).

This report describes an inverse method that has been developed to measure complex,
frequency-dependent dilatational and shear wavenumbers of a single slab-shaped material
subjected to large compressional forces. Based on thick plate theory, the linear equations of

motion of the system are first derived for a test specimen that is attached to a shaker at the




bottom and a mass at the top. A typical test configuration is shown in figures 1 and 2, where the
shaker projects mechanical energy onto a plate-shaped material that is mass loaded. Two
transfer function measurements are obtained by vibrating the mass-loaded material in both the
vertical and horizontal directions. Once this process is accomplished, the transfer functions are
combined to yield closed-form values of the dilatational and shear wavenumbers at any given
test frequency. After these parameters are estimated, calculations can be made for the complex,
frequency-dependent dilatational and shear wavespeeds; Young’s and shear moduli; and

Poisson’s ratio.

The above method is intended for use with materials that are to be placed in an environment
where they will be subjected to large compressional forces, such as those that would typically
arise in submarines, where the panels that coat the exterior of the ship are exposed to a wide

range of hydrostatic pressures.
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Figure 1. Vertical Motion Test
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Figure 2. Horizontal Motion Test

2. SYSTEM MODEL

The motion of the test specimen shown in figures 1 and 2 is governed by the equation

J*u

szu—i-(,%-k;z)VVou:péf—z . | 1)

where A and u are the complex Lamé constants (N/m?), pis the density (kg/m?), tis
time (s),  denotes a vector dot product, and u is the Cartesian coordinate displacement vector

of the material. The coordinate system of the test configuration is shown in figure 3. Note

that using this orientation results in = 0 and a having a value less than zero. The thickness




Figure 3. Coordinate System of Test Specimen Used in Model

of specimen 4 is a positive value. Equation (1) is manipulated by writing the displacement

vector u as

u . (x,y,z,1)
u=qu, (x,y,z,t) ¢, (2)
u,(x,y,z,1)

where x is the location along the plate (m), y is the location into the plate (m), and z is the
location normal to the plate (m), as shown in the figure. The symbol V in equation (1) is the

gradient vector differential operator written in three-dimensional Cartesian coordinates as

V=£ix + 2 +é—i2 , (3)
ox ' oy’ Oz

with 7, denoting the unit vector in the x-direction, i, denoting the unit vector in the y-direction,
and i, denoting the unit vector in the z-direction; V? is the three-dimensional Laplace operator

operating on vector u as

Viu=Vui + Vzu),iy +V7u_i. 4




and operating on scalar u as

u. .. *u... Su. .
Vzuwz =V-Vuxyz = xz’}”z + I;’z + k,;" ; (5)
7 ” ox 173% oz

The term V e u is called the divergence and is equal to

Ou, Ou, Ju,
+—2L 4

Veu= . 6)
ox Oy Oz

The displacement vector u is written as

u=Vg+Vxy, (7N

where ¢ is a dilatational scalar potential, x denotes a vector crossproduct, and  is an equi-

voluminal vector potential expressed as

Ve (x.7,2.0)
{[}: iyy('x‘:’y’Zﬁ I) ’ (8)
WZ (x9y925 {)

The problem is formulated as a two-dimensional system; thus y =0, uy, (x,»,2,1)=0, and

J()/dy =0. Expanding equation (7) and breaking the displacement vector into its individual

nonzero terms yields

§¢(.;,xz,t)—§%(;cezsf) (9)
zZ

u (x,z,t)=

and

é’gb(x,z,t) + gwy(xa Zsf)

22, 0) = 10
u, (x,2,1) > ™ (10)

Equations (9) and (10) are next inserted into equation (1), which results in




O°d(x,z,1)

c2V2P(x,2,1) = P

(11)
and

%y, (x,z,1)

2y72
c.\'v l//y(x9zﬁt)= 5[2

: (12)

where equation (11) corresponds to the dilatational component and equation (12) corresponds to
the shear component of the displacement field. Correspondingly, the constants ¢, and c, are the

complex dilatational and shear wavespeeds, respectively, and are determined by

¢, = A+2u (13)
\) Yo,

and

c = £ (14)
P

The relationship of the Lamé constants to the Young’s and shear moduli is shown as

i-— Eb (15)
(1+0)(1 - 20)
and
E
H=G= i) (1

where E is the complex Young’s modulus (N/m?), G is the complex shear modulus ( N/m?), and

v is the Poisson's ratio of the material (dimensionless).

The conditions of infinite length and steady-state response are now imposed, allowing the

scalar and vector potential to be written as

¢ (x,z,t) = D(z)exp(ikx)exp(imt) 17)




and

v, (x,z,t) = Y(z)exp(ikx)exp(ior) , (18)

where i is the square root of -1, @ is frequency (rad/s), and & is wavenumber with respect to the

x-axis (rad/m). Inserting equation (17) into equation (11) yields

2
I3 | p2w(z)=0 (19)
dz
where
a=.k2 -k, (20)
with
k=2 Q1)
Cy

Inserting equation (18) into equation (12) yields

5"%’5(2_)-; p¥()=0 @2)
where

B=~kI-k, | (23)
with

k, = ;w_ ) (24)

The solution to equation (19) is

D(z) = A(k, w)exp(iaz) + Bk, w)exp(-iaz) , (25)




and the solution to equation (22) is
Y(z) = C(k,w)exp(ifz) + D(k,w)exp(-ifz) , (26)

where A(k,w), B(k,w), C(k,w), and D(k,w) are wave response coefficients that are determined
later in section 3. The displacements, now written as functions of the unknown constants using

the expressions in equations (9) and (10), are

u_(x,z,t) = U_(k,z,w) exp(ikx)exp(iwr)
= {ia[A(k,@)exp(iaz) - B(k,»)exp(-iaz)] (27)
+ ik[C(k, w)exp(ifz) + D(k, w) exp(—iﬂz)] }exp(ikx)exp(ia)r)

and

u, (x,z,t) = U (k,z, w)exp(ikx)exp(iwt)
= {ik[A(k, ) exp(iaz)+ B(k,w)exp(-ia )] (28)
- iﬂ[C(k, w)exp(ifz) — D(k,w) exp(—i,Bz)] }exp(ikx) exp(iwt) .

In the next step, specific boundary conditions must be provided to obtain the individual solutions

for vertical motion (section 3) and horizontal motion (section 4).




3. TRANSFER FUNCTION FOR VERTICAL MOTION

For the case of vertical motion, the base at z = a is vibrated vertically with a shaker (see

figure 1). Formulating this problem requires definition of the four boundary conditions, as

shown next.

Because a rigid mass is attached to the material and the particle motion is vertical, the

tangential (horizontal) motion at the top of the plate (z = b) is zero, with this equation written as
u (x,b,1)=0 . (29)

The normal stress at the top of the specimen is equal to the opposite of the load created by the

mass in the z-direction. This expression is

~2
7. (6b,1) = (A+24) ﬂu:(;, bD) g Oxb0) 0w (xb1)

Z Ox or* ’ (30)

where M is mass per unit area (kg/m?) of the attached mass. The tangential motion at the

bottom of the plate (z = a) is zero and is shown as

u (x,a,t)=0. 3D
The normal motion at the bottom of the plate (prescribed as a system input) is written as
u,(x,a,t)=U,exp(iwt) . 32)

Assembling equations (1)~(32) and letting b = 0 yields the four-by-four set of linear

equations that model the system as
Ax=b , (33)
where the entries of equation (33) are

A, =ik , (34)
AIE

4, , (35)

A;3 =-if , (36)




A,=-4,, (37)
A, =—a’A -2a*u—- Ak’ -iMo’a , (38)
A, = —a’A-2a’ -k’ +iMeo’a | (39)
A,y = -2kfu —iMo’k | (40)
A,y =2kPu~iMo’k , (41)
4,,= 4, exp(iaa) , (42)
A, = A, exp(-iaa) , (43)
Ay = A exp(ifa) | (44)
Ay, =—Ay, exp(—ifia) . | (45)
A, =iaexpiaa) , (46)
A, =-iaexp(-iaa) , (47)
A,;, =ikexp(ifa) , (48)
A,, =ikexp(~ifa) , (49)
x,, = Ak, ) , (50)
%, = Bk, w) , (51)
%, =Clk,w) , (52)
x, = D(k,w) , (53)
b, =0, , (54)
b, =0, (55)
b, =0, (56)
and

b, =U, . (537)

From equations (34)-(57), the solution to the constants A(k,®), B(k,w), C(k,w), and D(k,w)

can be calculated at each specific wavenumber and frequency from

x=A"b . (58)

10



Noting that k= 0 for vertical motion and using the coefficients from equation (58) results in the

transfer function between the vertical base displacement and the vertical mass displacement

being written as

1 U0bw) 1

W= o™,

; (59
cos(k,h) — (A—J—ché sin(k,h)
P

where 7 (@) or R (@) corresponds to the frequency-domain data from the vertical motion

experiment, which are typically obtained by applying a Fourier transform to raw time-domain

data collected with accelerometers or laser velocimeters.

4. TRANSFER FUNCTION FOR HORIZONTAL MOTION

For the case of horizontal motion, the base at z = a is vibrated horizontally with a shaker (see

figure 2). Formulating this problem requires definition of the four boundary conditions, as

shown next.

Because a rigid mass is attached to the material and the particle motion is horizontal, the

shear (tangential) stress at the top of the plate is equal to the opposite of the load created by the

mass in the x-direction. This expression is

Ou (x,b,1) N ou(x, b,t)} Y 8u_(x,b,1) 60)

- (ebit)=
Tl )’u[ s x or

where M is the mass per unit area (kg/m?) of the attached mass. The normal motion at the top

of the plate (z = b) is zero, with this equation written as
u,(x,b,t)=0. (61)

The tangential motion at the bottom of the plate (z = a), prescribed as a system input, is shown as

u,(x,a,t) =V, expio?) , (62)




and the normal motion at the bottom of the plate is zero, which is expressed as
u,(x,a,t)=0 . (63)

Assembling equations (1)—(28) and (60)—(63) and letting b = 0 yields the four-by-four set of

linear equations that model the system as
Ax=b , (64)

where the entries of equation (64) are

A, =2pka ~io* Mk , (65)
A, =2pka -0’ Mk (66)
A, = puf’ ~ uk’ +io’ Mg | (67)
Ay = uf’ — uk’ —io’Mp (68)
4, =ia , (69)
A, =-A4, , (70)
A, =ik , (71)
Ay =4, , (72)
A4, = A expiaa) , (73)
Ay, = Ay, exp(-iaa) , (74)
Ay =-ifexp(iffa) , (75)
Ay, =1fexp(-ifa) , (76)
A, = 4, exp(iaa) , (77)
A, =4, exp(-iaa) , (78)
A,y = A,y expifa) (79)
A,, = A,, exp(=ifa) , (80)
x, = A(k,®) , (81)
X, = Blk,w) , (82)
x;, = C(k, ) , (83)

12




%, = Dk, o) . (84)
b, =0, (85)
b, =0, (86)
by, =V, (87)
and
b, =0 | (88)

Equations (65)-(88) allow calculation of the solution to the constants A(k,w), B(k,w),

C(k,w).and D(k,w) at each specific wavenumber and frequency from

x=ATp . (89)

Noting that k = 0 for horizontal motion and using the coefficients from eciuatiﬂn (89) results in

the transfer function between the horizontal base displacement and the horizontal mass

displacement being written as

1 U 0,bw) 1

T)(w) = R (@) = % Y,
2@ 0 cos(k h) — (—)ks sin(k /)
P

, (90)

where 7,(@) or R,(w) corresponds to the frequency-domain data from the horizontal motion

experiment.

5. INVERSE SOLUTION FOR SYSTEM WITHOUT MASS

Although designed for the testing of materials subjected to compressional forces, the
experiment can also be conducted without these forces, as described next. This simpler version
without the mass has an inverse solution that is a closed-form expression — which does not
occur when the mass is added to the experiment and corresponding analysis. When mass is not

present in the experiment, equations (59) and (90) become

1 U@Obw) 1

L=~ U,  costk,h) O

13




and

1 U@Obo) 1
R, () vV,  costk.h)’

I (w)= (92)

respectively. Inverting equation (91) yields the value of &, as a function of R;. The solution

for the real part of &, is
1 nw
— Arccos(s) + — n even
2h 2h
Re(k,) = : (93)

iArc cos(—s) + nr n odd
2h

where

s =[Re(R,)J* + [Im(R, ) — y/{[Re(R, ) + [Im(R,)I*}’ - RIRe(R, )T’ — 2[Im(R,)* -1} ,
(94)

n is a non-negative integer, and capital A denotes the principal value of the inverse cosine
function. The value of # is determined from the function s, which is a cosine function with
respect to frequency. At zero frequency, # is 0. Every time s cycles through = radians (180°),

n is increased by 1. After the solution to the real part of £, is found, the solution to the

imaginary part is written as

Re(R,) Im(R,) } . (95)

Im(kd)=—1—log -
h C{COS[Re(kd)h] sin[Re(k, )]

The inverse solution to equation (92) is the same as that for equation (91) and is written as

LArc cos(r) + i3 m even
2h 2h
Re(k,) = , (96)
LArccos(—r) L Br m odd
2h 2h




where

r=[Re(R,)]’ +[Im(R,)]" —\/ {[Re(R,)P +[Im(R, )T’ § - RRe(®,) - 2Im(R, )P -1},

7
m is a non-negative integer, and capital A denotes the principal value of the inverse cosine
function. The value of m is determined from the function r, which is a cosine function with
respect to frequency. At zero frequency, m is 0. Every time cycles through = radians (180°),
m is increased by 1. After the solution to the real part of k, is found, the solution to the

imaginary part is written as

im{k5)=lloge{ Re(R,) __Im(R,) } (98)
h cos[Re(k,)h] sin[Re(k,)h]

6. INVERSE SOLUTION FOR SYSTEM WITH MASS

Next solved is the inverse problem for vertical and horizontal motion with a mass attached to
the plate. This procedure involves use of the experimental data and equations (59) and (90) to

estimate the dilatational and shear wavenumbers, respectively. Equations (59) and (90) can be

rewritten as
M .
f(k;)=0=cos(k,h)— (;Jkd sin(k, ) - R, (99)
and
(ks
fk;)=0=cos(k,h)—| — |k, sin(k,h)- R, , (100)
Y

respectively, where the problem now becomes finding the zeros of the right-hand side of

equations (99) and (100) or, in the presence of actual data that contain noise, finding the relative

15




minima of the right-hand side of equations (99) and (100) and then determining which relative
minimum corresponds to dilatational and shear wave propagation and which relative minima are
extraneous. Because equations (99) and (100) have a number of relative minima, zero-finding
algorithms are not applied to this function, as they typically do not find all the minima locations
and are highly dependent on initial starting locations. The best method for finding all minima
locations is to plot the absolute value of the right-hand side of equations (99) and (100) as
surfaces, with the real part of the wavenumber (&, or £ ) on one axis and the imaginary part of
the wavenumber (&, or k,) on the other. At the lower frequencies, the minimum farthest to the
left will correspond to dilatational or shear wave propagation. As the frequency increases,
extraneous minima will appear to the left of the minimum that corresponds to dilatational or
shear wave propagation; however, the wave propagation minimum will always be close to the
previous test frequency wave propagation minimum provided that the frequency increments are

relatively small.

Also, because the real part of the both the dilatational and shear wavenumbers are mono-
tonically increasing functions with respect to frequency, each increase in frequency will require
that the real part of the new wavenumber that is estimated be greater than the real part of the old
wavenumber that was previously estimated. Sometimes referred to as a grid method, this process

is illustrated in section 8.

16




7. DETERMINATION OF PROPERTIES FROM WAVENUMBERS

The material properties can be calculated from the wavenumbers. First, the dilatational and

shear wavespeeds are determined from

17}
¢, =— 101
sy (101)
and
1)
c,=—, 102
i (102)

respectively. Next, the Lamé constants are calculated from equations (13) and (14), now written

as

2

H=pc; (103)

and
A=pci-2pc? . (104)
Poisson’s ratio is then determined from

A
U—m N (}GS)

Young’s modulus from

E=2#Qu+3l) (106)
2u+ i)

and the shear modulus directly from

G=u . (107)

17 (18 blank)




8. NUMERICAL SIMULATION

The above measurement method can be simulated by means of a numerical example, with the
values for the soft rubberlike material properties of the test specimen expressed as follows:
uncompressed Young’s modulus E of [(1e8-i2e7) + (5e3 f —i3e2 /)] in N/m’ (where fis
frequency in Hertz), Poisson’s ratio v of 0.40 (dimensionless), density p of 1200 kg/m*, and
thickness /2 of 0.1 m. The top mass is a 0.0254-m (1-inch) steel plate that has a mass per unit
area value M of 199 kg/m”. With this mass value, the compressed Young’s modulus of the test
specimen is 1.5 times the uncompressed value. The system is first analyzed without the mass,
using the closed-form solution method developed in section 5. Next, the mass is added to the

plate and the grid method developed in section 6 is applied to the simulated data.

The simulations are conducted with three different amounts of additive noise: no additive

noise, 2% additive noise, and 4% additive noise. Additive noise is included in the transfer

function with the equation
T.(®) =T (@) +e{Re[T(w)]o, +ilm[T(®)]o,} , (108)

where ¢ is the amount of additive noise added to the transfer function and o, and oy, are

random numbers with zero mean and a variance of one. The value e is also called the transfer

function error value, and it represents the deviation of the transfer function from perfect data.

Figure 4 plots the transfer function of the system for vertical motion without the mass and
corresponds to equation (59) with M= 0. Figure 5 illustrates the transfer function of the system
for horizontal motion without the mass and corresponds to equation (90) with A/=0. In both

figures, the top plot is the magnitude in decibels and the bottom plot is the phase angle in

degrees.

Figure 6 is a plot of the function s versus frequency and corresponds to equation (94). Figure

7 is a plot of the function r versus frequency and corresponds to equation (97).

All the plots in figures 4 through 7 are displayed without additive noise.
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Figure 8 shows actual and estimated dilatational wavespeed versus frequency for a system
without mass for no additive noise, 2% additive noise, and 4% additive noise. This plot
corresponds to the solution determined from equations (93)—(95). Figure 9 shows actual and
estimated shear wavespeed versus frequency without mass for no additive noise, 2% additive

noise, and 4% additive noise. This plot corresponds to the solution determined from equations

(96)—(98).

Figure 10 plots actual and estimated shear modulus versus frequency for a system without
mass for no additive noise, 2% additive noise, and 4% additive noise and is constructed using
equation (103). Figure 11 shows actual and estimated Young’s modulus versus frequency for a
system without mass for no additive noise, 2% additive noise, and 4% additive noise and is

constructed using equations (103), (104), and (106).

Figure 12 illustrates actual and estimated real Poisson’s ratio versus frequency for a system
without mass for no additive noise, 2% additive noise, and 4% additive noise and was plotted
using equation (105). Because the numerical example is formulated using a Poisson’s ratio that
is strictly real, no imaginary component is shown in this plot. Imaginary values of Poisson’s

ratio are possible, however, and have been shown to theoretically exist.!’

Figure 13 is a plot of the transfer function of the system with mass for vertical motion versus
frequency and corresponds to equation (59) with A/ = 199 kg/m®. Figure 14 is a plot of the
transfer function of the system with mass for horizontal motion versus frequency and corre-

sponds to equation (90) with M= 199 kg/m®. The plots in both figures are displayed without

additive noise.

Figure 15 shows the magnitude of the surface given by equation (99) versus real and
imaginary dilatational wavenumbers at 2000 Hz with an additive noise value of 0.04 for a system
with mass. The actual value of the dilatational wavenumber is denoted with a square marker, and
the estimated value (found using the identification of a local minimum) is shown on the plot with
a circle marker. Figure 16 is a plot of the magnitude of the surface given by equation (100)
versus real and imaginary shear wavenumbers at 2000 Hz with an additive noise value of 0.04 for

a system with mass. The actual value of the shear wavenumber is denoted with a square marker,

and the estimated value (found using the identification of a local minimum) is shown on the plot
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with a circle marker. These figures were constructed using 200 discrete points in both axis
directions. The identification process was repeated every 100 Hz with a frequency spectrum of

50 to 5000 Hz.

Figure 17 is a plot of actual and estimated dilatational wavespeed versus frequency for a
system with mass for no additive noise, 2% additive noise, and 4% additive noise. Figure 18
shows the actual and estimated shear wavespeed versus frequency for a system with mass for no
additive noise, 2% additive noise, and 4% additive noise. Figure 19 plots actual and estimated
shear modulus versus frequency for a system with mass for no additive noise, 2% additive noise,
and 4% additive noise. The step-shaped results in the real part of figures 18 and 19 (upper plot)
are due to the discretization size of the surfaces in equations (99) and (100). A discretization size
finer than 200-by-200 points would produce less steplike (smoother) results. Figure 20 is a plot
of actual and estimated Young’s modulus versus frequency for a system with mass for no
additive noise, 2% additive noise, and 4% additive noise. Figure 21 illustrates actual and
estimated real Poisson’s ratio versus frequency for a system with mass for no additive noise, 2%

additive noise, and 4% additive noise.

Table 1 presents additive noise versus parameter estimation error for the system without
mass and table 2 for the system with mass. The parameter estimation error was determined from

the equation

1 N

9:—]\72

n=|

KC.\‘I (a)ll) - KG('/ (a)n )I

Kacl a)n )' (1 09)

2

where @1is the parameter estimation error, k., (®,) is the estimated value of the parameter at the
nth frequency value, ., (@,) is the actual value of the parameter at the nth frequency value, and
N is the total number of frequencies at which an estimate is computed. Because the routine did
not produce a realistic estimate of the parameters at very low frequencies, these parameters are
not included in the tables. All the parameters are estimated with very small error. Based on the
results shown in each table, it is found that the grid method produces a more accurate estimate of

the parameters than does the numerical solution method for data with noise.
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Table 1. Additive Noise Versus Parameter Estimation Error

Sor System Without Mass

Parameter
Parameter Additive Noise Estimation Error

¢4 0 ~0

¢y 0.020 0.021

cy 0.040 0.027

Cg 0 ~0

g 0.020 0.0051

¢, 0.040 0.0099
G 0 ~0

G 0.020 0.012

G 0.040 0.020

E 0 ~0

E 0.020 0.015

E 0.040 0.022

v 0 ~0

v 0.020 0.013

v 0.040 0.017




Table 2. Additive Noise Versus Parameter Estimation Error

Sor System with Mass
Parameter
Parameter Additive Noise Estimation Error

¢4 0 0.0023
¢y 0.020 . 0.0076
cg 0.040 0.013

g 0 0.0024
g 0.020 0.0046
g 0.040 0.0071
G 0 0.0047
G 0.020 0.0092
G 0.040 0.014

E 0 0.0045
E 0.020 0.0087
E 0.040 0.013

v 0 0.0012
v 0.020 ‘ 0.0030
v 0.040 0.0051
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9. CONCLUSIONS AND RECOMMENDATIONS

This report documents the derivation of a theoretical method for estimating the mechanical
properties of slab-shaped materials subjected to compressional forces. After a single thick plate
is vibrated both vertically and horizontally and the transfer functions between the faces of the
plate are measured, estimations of dilatational wavespeed, shear wavespeed, Young’s modulus,
shear modulus, and Poisson’s ratio can be accurately obtained. Further investigation showed that

this technique is relatively immune to noise mechanisms that are sometimes present in the

measurements.

It is recommended that actual measured data be used in a laboratory setting to evaluate the

effectiveness of the inverse method.
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